提示:担心找不到本站?在百度搜索 PO18脸红心跳 | 也可以直接 收藏本站

第854节

      仿佛……
    某个埋藏在血脉中的基因被开启了。
    如果此时有人对比战犯铃木启久的照片,便会发现二人凶狠的神情宛若一人。
    只是与铃木启久不同的是,如今的铃木厚人再也不能像自己的先祖一样,在这片土地上肆意杀人了。
    “……”
    在铃木厚人提出这个想法后。
    他身边圆滚滚的尼玛脸色变幻了片刻,果断一咬牙,第一个举起了手:
    “我赞同铃木先生的想法。”
    不同于现场的其他大佬,如今才42岁的尼玛,正处于科研地位的飞速上升期。
    并且他的研究领域不像威腾那样属于纯理论领域,他在粒子领域的还原论方面也颇有建树。
    许多人认为他可能成为第二位利奥·詹姆斯·雷恩沃特,对理论物理带来巨大的变革。
    也就是说他的研究方向,比威腾更有可能取得实际成果获得诺奖。
    但由于尼玛出身比较特殊的缘故——这点从他的姓氏上就可以看出来,他想要获得诺奖除了成果之外,还需要大量光鲜的履历。
    这种隐性的种族歧视,这些年在科研圈中愈发有些常见,尤其是建国同志上位后,逼回来了不少人才……
    这也是为什么这些年尼玛经常出没于各大讲座和发布会的原因。
    可如果今天‘冥王星’粒子的计算过程出了问题,那么尼玛的履历上就会多出了一个巨大的污点。
    这种污点对于希格斯、特胡夫特等人而言虽然有些尴尬,但却不会太过影响到他们的地位,毕竟他们获得诺奖在前。
    但对尼玛这个后辈来说,负面影响就会很大很大了。
    假设哪年尼玛得出了和其他人差不多价值的成果,诺奖给谁都五五开,那么这个污点恐怕将会直接导致天平的倾斜。
    因为……
    这里是科院的主场。
    你可以在欧洲失败,也可以在澳洲失败,甚至可以在非洲失败。
    但唯独不能在亚洲……或者准确来说,在华夏失败。
    所以在铃木厚人提出了确定能级检索粒子的想法后,尼玛第一个选择了赞同。
    这是他最后的机会。
    如果能级数据和物理现象能够支撑他和其他几人的计算结果,那么顶多就是数学参数上存在一些未优化漏洞的锅。
    也就是由于某种未知原因,导致了物理结果和数学计算不相符。
    如此一来。
    所有人都可以比较从容的收场——除了科院。
    这应该是最理想的结果,各方皆大欢喜。
    但如果物理结果支撑科院组的计算结果……
    那么这一次发布会,将会成为科院真正的登神长阶。
    而尼玛和其余人,都将成为长阶之下的枯骨。
    想到这里。
    尼玛圆滚滚的身躯,下意识便颤抖了几下。
    若真是如此,那就太可怕了……
    而在尼玛出神思索的间隙,其他几位大佬也纷纷同意了铃木厚人的想法。
    当然了。
    他们做出选择的原因就相对没有尼玛这么现实了,更多还是出于对真相的探究——这不是说他们有多豁达,而是因为他们的地位在那儿,不需要考虑尼玛担心的那些问题。
    在达成一致的意见后。
    威腾便走到数据中心边上,开始计算起了那颗微粒的能级。
    能级这个概念描述的一般是粒子碰撞时产生的能量,而这种数值在属性上的反馈,便是它的质量。
    这点从描述粒子的单位上就不难看出一二。
    微粒的质量一般是以mev为单位,量级上是百万电子伏特,读作兆电子伏特。
    它是能量单位,又是一个质量单位。
    比如我们描述某个粒子对撞的能级是用mev,而描述这颗粒子质量的时候,使用的还是mev。
    就像描述各位读者老爷,可以说老爷们高180厘米,也可以说各位长18厘米。
    至于mev往上是gev,也就是十亿电子伏特。
    1gev等于1000mev。
    众所周知。
    一般来说,第一性原理无法用来计算粒子质量,想要靠理论预测粒子质量,其实非常困难。
    但另一方面。
    既然是困难,就代表着这件事的概率虽然很低,但不为零。
    事实上。
    截止到目前。
    在基本粒子当中,确实是有两种粒子的质量是理论预测出来的。
    它们就是w和z玻色子。
    整个计算过程由温伯格推导,他将粒子的真空期望值和两种弱作用耦合强度转化成了费米常数gf、和、以及弱混合角两个实验可测参数,最终求出的两种粒子质量。
    目前比较前段的研究还突破到了强子质量的计算,不过内禀质量这块一直没有一个比较权威的公论,争议还是相对比较大的。
    考虑到接下来的内容涉及到了能级概念,这里简单再做个科普。
    在目前的微粒模型中,电子的质量是0.551mev,算是比较轻的微粒了。
    带正电的质子是938.3mev,不带电的中子是939.6mev。
    质子和中子也不是基本粒子,而是由夸克和胶子通过强相互作用构成的。
    在低能下,质子和中子可以看做是三个组份夸克构成的复合粒子。
    质子是两个上夸克和一个下夸克,中子是一个上夸克和两个下夸克。
    上夸克和下夸克的质量也相近,分别是3mev和5mev,有的模型中至多会提高到10mev。
    看到这里,可能有同学就会感觉奇怪了:
    不对啊。
    按照比例来看,夸克只占有质子质量的2%,胶子又没有质量。
    那为什么教科书上会说质子是由夸克构成的呢?
    原因很简单。
    这里的夸克质量叫做流夸克质量,即在电弱对称破缺后夸克获得的质量。
    在强互作用中。
    夸克会通过获得一个相比流质量来说很大的有效质量,也叫作组份质量。
    上下夸克的有效质量大约为300mev,三个上下夸克加起来就是接近900mev,也就是中子和质子的重量。
    如果感觉这个概念有些费脑力的话……没关系,物理学界大佬接受这个概念也用了好几年呢。
    四舍五入的话,你就等于是物理学界的顶尖大佬。
    除了夸克之外。
    μ子和t子的质量分别为106mev与1.78gev,这两个粒子很容易发生衰变,变成电子和中微子。
    希格斯粒子的质量则是125gev,电弱相互作用的传播子w、z的质量分别是80和91gev。
    好了,视线再回归原处。
    总而言之。
    此前几个小组计算的费米面数据,就是为了这一阶段准备的。
    因此到了这一步,计算过程倒是不需要人工再出手了。
    只见威腾轻车熟路的输入起了数据,希格斯等人则在一旁协助校验。
    “……qt态的宽度小于2mev……”
    “……内部夸克分布函数的求和规则为的求和规则∫01dx[u(x)-u(x)]=2……”
    “……流质量上阶系数0.888……”
    “呱唧呱唧……”
    极光系统对粒子质量的计算算法和温伯格相同,也就是通过费米面数据构筑出一个模型,然后把数学数值修正成具体的结果。
    用盖房子来举例的话。
    徐云他们之前计算出来的费米面数据就是水泥,现在极光系统就相当于瓦匠。
    瓦匠的工作就是把水泥和砖头盖成房子,最终房子的成型体就是那颗粒子的质量。
    注,理论质量。
    此时此刻。
    随着转机的发现,各大平台上原先对徐云……或者说科院组的抨击也小了许多。
    当然了。
    这只是一种暂时性的情况,一旦实验证明铃木厚人他们的数据正确,这些喷子又会掀起一场狂欢。
    滴滴滴——